Even before the Minnesota Geological and Natural History Survey became an official agency in 1872, geological mapping was playing a role in Minnesota's government and politics (Bulletin 1). This included early attempts at mineral exploration, descriptions of the physical features of the area, and the exploration for and establishment of State title to salt lands, an important commodity in attracting settlers to the new state ("Minnesota's Salt Lands Saga" in Minnesota History Magazine Vol. 53, Issue 1).

Through the efforts of the first president of the University of Minnesota William Folwell (1833-1929), who saw a need for collecting and disseminating information concerning the natural history of Minnesota as well as more complete study of Minnesota geology relating to mineral resources, the Minnesota Geological and Natural History Survey was established by law in 1872. N. H. Winchell was hired as the State Geologist.

In 1873 a preliminary map (dated 1872) of the geology of Minnesota was published (Preliminary Bedrock Geology of Minnesota, 1872) and became the first in a long line of state-wide and regional geologic maps. Other work of the Survey between 1872 and 1901 involved botanical and biological research across the state (Bulletin 3, and Bulletin 7).

In 1911, when the Minnesota Geological Survey was established as the successor to the Geological and Natural History Survey, geologic mapping had the dual purpose of supporting mineral exploration (Plate 1, Bulletin 19) and academic research (Plate 1, Bulletin 28).

Because a little information often leads to more, and interpretations change with time and knowledge, maps from different periods provide windows from which to observe some of the changes and development of ideas, the amount of data, or the type of data (Aeromagnetic map of Minnesota, Southeastern Region) on which a map can be based. The following two links show bedrock geology maps for the Twin Cities metropolitan area from 1965 (Bedrock geology, Minneapolis-St. Paul, M1) and the year 2000 (Bedrock map, seven county metropolitan area, M104). The year 2000 map relied heavily on geology and depth information interpreted from water well data that was not available in 1965.
Other maps offer insights on the impacts of human activities on the landscape, such as the effects of iron mining in northern Minnesota, (One hundred years of mining, Western Mesabi range, M118) and (One hundred years of mining, Eastern Mesabi range, M157).

Mapping is just as much a part of the Minnesota Geological Survey today as it ever was. Using modern methods of computer map production and Geographic Information Services (GIS), the MGS is now publishing more maps in a year than we have in some decades. This is also partially related to a successful County Geologic Atlas program whereby counties are able to participate in developing 100,000-scale geologic maps as a foundation for ground water and land development decisions (Wabasha County geologic atlas, C14).

Today, while some mapping remains focused on assisting mineral exploration (Map of the Duluth Complex), much interest is now attached to mapping as a means of managing and protecting ground water resources (Scott County geologic Atlas, C17).